

Self-supervised learning with rotation-invariant kernels

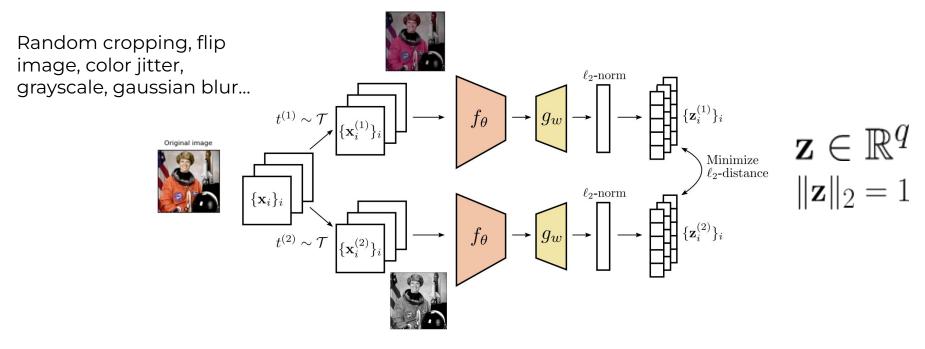
Léon Zheng, Gilles Puy, Elisa Riccietti, Patrick Pérez, Rémi Gribonval

SMART TECHNOLOGY FOR SMARTER MOBILITY

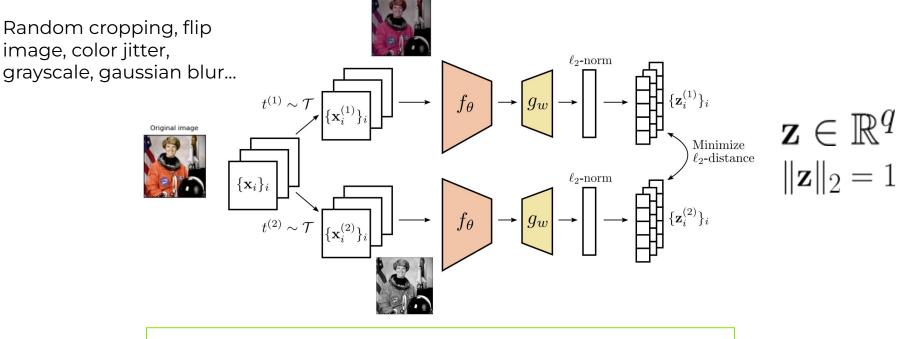
<u>Approach</u>: learn **invariance** to image transformations via a Siamese network

Random cropping, flip image, color jitter, grayscale, gaussian blur...

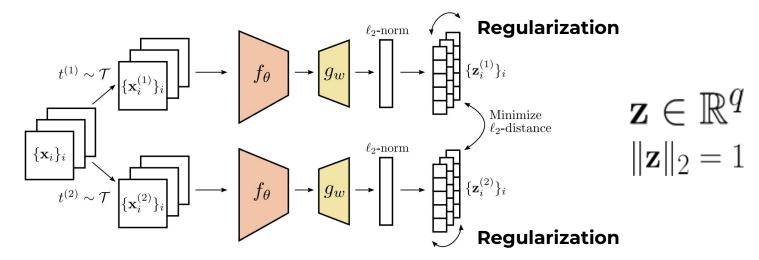
<u>Approach</u>: learn **invariance** to image transformations via a Siamese network

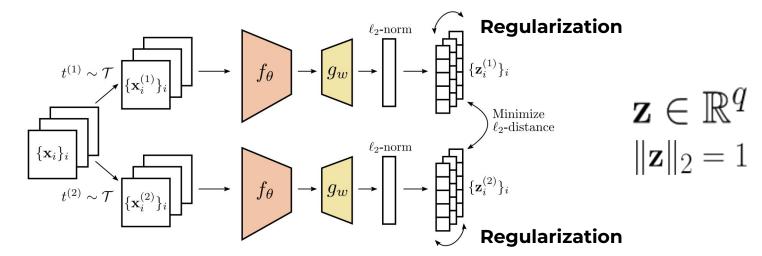


Approach: learn **invariance** to image transformations via a Siamese network



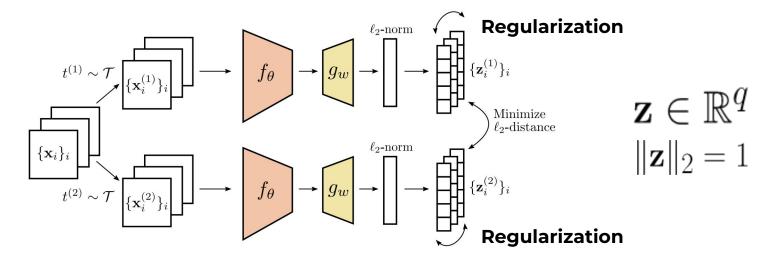
Avoid learning a low dimensional representation





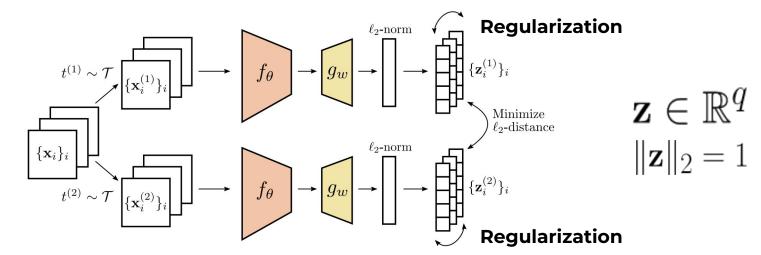
Existing methods differ in the way they impose this regularization:

• Sample-contrastive methods [Oord et al., 2018; Hjelm et al., 2019; Chen et al., 2020; He et al., 2020; Henaff, 2020]



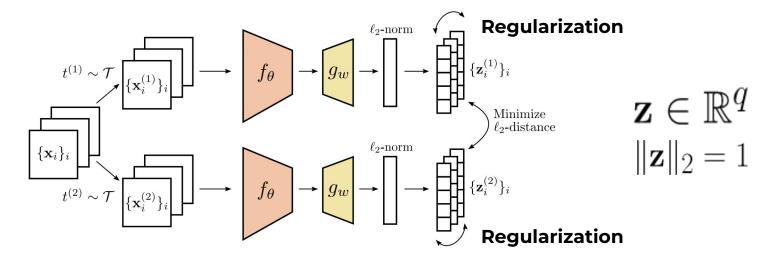
Existing methods differ in the way they impose this regularization:

- Sample-contrastive methods [Oord et al., 2018; Hjelm et al., 2019; Chen et al., 2020; He et al., 2020; Henaff, 2020]
- Distillation methods [Grill et al., 2020; Gidaris et al., 2020; 2021; Chen & He, 2021; Caron et al., 2021]



Existing methods differ in the way they impose this regularization:

- Sample-contrastive methods [Oord et al., 2018; Hjelm et al., 2019; Chen et al., 2020; He et al., 2020; Henaff, 2020]
- Distillation methods [Grill et al., 2020; Gidaris et al., 2020; 2021; Chen & He, 2021; Caron et al., 2021]
- Information-maximization methods [Zbontar et al., 2021; Ermolov et al., 2021; Bardes et al., 2022]



Existing methods differ in the way they impose this regularization:

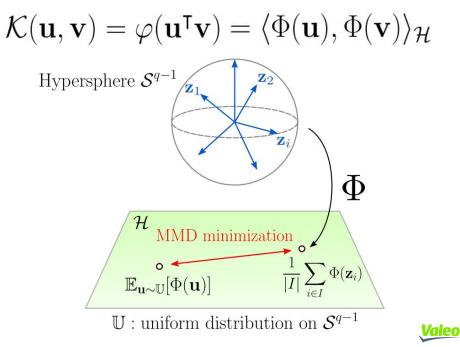
- Sample-contrastive methods [Oord et al., 2018; Hjelm et al., 2019; Chen et al., 2020; He et al., 2020; Henaff, 2020]
- Distillation methods [Grill et al., 2020; Gidaris et al., 2020; 2021; Chen & He, 2021; Caron et al., 2021]
- Information-maximization methods [Zbontar et al., 2021; Ermolov et al., 2021; Bardes et al., 2022]

What is a good choice of regularization?

Kernel point of view: MMD between the **embedding distribution** and the **uniform distribution** on the hypersphere.

Kernel point of view: MMD between the **embedding distribution** and the **uniform distribution** on the hypersphere.

Rotation-invariant kernel:



Kernel point of view: MMD between the **embedding distribution** and the **uniform distribution** on the hypersphere.

Rotation-invariant kernel: $\mathcal{K}(\mathbf{u},\mathbf{v}) = \varphi(\mathbf{u}^{\mathsf{T}}\mathbf{v}) = \langle \Phi(\mathbf{u}), \Phi(\mathbf{v}) \rangle_{\mathcal{H}}$ Hypersphere \mathcal{S}^{q-1} Z Φ MMD minimization $\Phi(\mathbf{z}_i)$ $\mathbb{E}_{\mathbf{u} \sim \mathbb{U}}[\Phi(\mathbf{u})]$ \mathbb{U} : uniform distribution on \mathcal{S}^{q-1}

1) Unification

$\mathcal{K}(\mathbf{u},\mathbf{v})$	Method
$(\mathbf{u}\mathbf{v}^{ op})^2$	Contrastive
$e^{-t\ \mathbf{u}-\mathbf{v}\ _2^2}$	Alignment & Uniformity on the Hypersphere
$C - \ \mathbf{u} - \mathbf{v}\ _2^{2s-q+1}$	PointContrast
$b_1 \mathbf{u} \mathbf{v}^\top + b_2 \frac{q(\mathbf{u} \mathbf{v}^\top)^2 - 1}{q - 1}$	Analog to VICReg

Kernel point of view: MMD between the **embedding distribution** and the **uniform distribution** on the hypersphere.

Rotation-invariant kernel: $\mathcal{K}(\mathbf{u},\mathbf{v}) = \varphi(\mathbf{u}^{\mathsf{T}}\mathbf{v}) = \langle \Phi(\mathbf{u}), \Phi(\mathbf{v}) \rangle_{\mathcal{H}}$ Hypersphere \mathcal{S}^{q-1} Z Φ MMD minimization $\Phi(\mathbf{z}_i)$ $\mathbb{E}_{\mathbf{u} \sim \mathbb{U}}[\Phi(\mathbf{u})]$

 \mathbb{U} : uniform distribution on \mathcal{S}^{q-1}

1) Unification

$\mathcal{K}(\mathbf{u},\mathbf{v})$	Method
$(\mathbf{u}\mathbf{v}^{ op})^2$	Contrastive
$e^{-t\ \mathbf{u}-\mathbf{v}\ _2^2}$	Alignment & Uniformity on the Hypersphere
$C - \ \mathbf{u} - \mathbf{v}\ _2^{2s-q+1}$	PointContrast
$b_1 \mathbf{u} \mathbf{v}^\top + b_2 \frac{q(\mathbf{u} \mathbf{v}^\top)^2 - 1}{q - 1}$	Analog to VICReg

2) Good kernel choices?

Kernel point of view: MMD between the **embedding distribution** and the **uniform distribution** on the hypersphere.

Rotation-invariant kernel: $\mathcal{K}(\mathbf{u},\mathbf{v}) = \varphi(\mathbf{u}^{\mathsf{T}}\mathbf{v}) = \langle \Phi(\mathbf{u}), \Phi(\mathbf{v}) \rangle_{\mathcal{H}}$ Hypersphere \mathcal{S}^{q-1} Φ MMD minimization $\Phi(\mathbf{z}_i)$ $\mathbb{E}_{\mathbf{u} \sim \mathbb{U}}[\Phi(\mathbf{u})]$

 \mathbb{U} : uniform distribution on \mathcal{S}^{q-1}

1) Unification

$\mathcal{K}(\mathbf{u},\mathbf{v})$	Method
$(\mathbf{u}\mathbf{v}^{ op})^2$	Contrastive
$e^{-t\ \mathbf{u}-\mathbf{v}\ _2^2}$	Alignment & Uniformity on the Hypersphere
$C - \ \mathbf{u} - \mathbf{v}\ _2^{2s-q+1}$	PointContrast
$b_1 \mathbf{u} \mathbf{v}^\top + b_2 \frac{q(\mathbf{u} \mathbf{v}^\top)^2 - 1}{q - 1}$	Analog to VICReg

2) Good kernel choices?

3) Identifying a new competitive kernel

$$\begin{split} \mathrm{MMD}(\mathbb{Q},\mathbb{U})^2 &:= \left\| \int_{\mathcal{S}^{q-1}} \mathcal{K}(\cdot,\mathbf{z}) d\mathbb{Q}(\mathbf{z}) - \int_{\mathcal{S}^{q-1}} \mathcal{K}(\cdot,\mathbf{u}) d\mathbb{U}(\mathbf{u}) \right\|_{\mathcal{H}}^2 \\ & \text{Uniform distribution on hypersphere } \mathcal{S}^{q-1} \end{split}$$

$$\begin{split} \mathrm{MMD}(\mathbb{Q},\mathbb{U})^2 &:= \left\| \int_{\mathcal{S}^{q-1}} \mathcal{K}(\cdot,\mathbf{z}) d\mathbb{Q}(\mathbf{z}) - \int_{\mathcal{S}^{q-1}} \mathcal{K}(\cdot,\mathbf{u}) d\mathbb{U}(\mathbf{u}) \right\|_{\mathcal{H}}^2 = \mathbb{E}_{\mathbf{z},\mathbf{z}'\sim\mathbb{Q}} \left[\tilde{\mathcal{K}}\left(\mathbf{z},\mathbf{z}'\right) \right] \\ & \text{Uniform distribution on hypersphere } \mathcal{S}^{q-1} \qquad \text{where } \tilde{\mathcal{K}}(\cdot,\cdot) = \mathcal{K}(\cdot,\cdot) - b_0 \end{split}$$

$$\begin{split} \mathrm{MMD}(\mathbb{Q},\mathbb{U})^2 &:= \left\| \int_{\mathcal{S}^{q-1}} \mathcal{K}(\cdot,\mathbf{z}) d\mathbb{Q}(\mathbf{z}) - \int_{\mathcal{S}^{q-1}} \mathcal{K}(\cdot,\mathbf{u}) d\mathbb{U}(\mathbf{u}) \right\|_{\mathcal{H}}^2 = \mathbb{E}_{\mathbf{z},\mathbf{z}'\sim\mathbb{Q}} \left[\tilde{\mathcal{K}}\left(\mathbf{z},\mathbf{z}'\right) \right] \\ & \text{Uniform distribution on hypersphere } \mathcal{S}^{q-1} \qquad \text{where } \tilde{\mathcal{K}}(\cdot,\cdot) = \mathcal{K}(\cdot,\cdot) - b_0 \end{split}$$

Proposed generic regularization loss:

$$\mathcal{L}_{reg}(\{\mathbf{z}_i\}_{i=1}^n) := \widehat{\mathrm{MMD}}^2(\mathbb{Q}, \mathbb{U}) = \frac{1}{n^2} \sum_{i=1}^n \sum_{i'=1}^n \tilde{\mathcal{K}}(\mathbf{z}_i, \mathbf{z}_{i'})$$

interpretation as an energy functional

Invariance Kernel regularization

$$\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{z}_{i}^{(1)} - \mathbf{z}_{i}^{(2)}\|_{2}^{2} + \frac{\lambda}{2} \left(\mathcal{L}_{reg}(\{\mathbf{z}_{i}^{(1)}\}_{i=1}^{n}) + \mathcal{L}_{reg}(\{\mathbf{z}_{i}^{(2)}\}_{i=1}^{n}) \right) \quad \textbf{int} \quad \mathbf{x}^{(2)} \quad \mathbf{x}^{(2$$

Invariance Kernel regularization

$$\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{z}_{i}^{(1)} - \mathbf{z}_{i}^{(2)}\|_{2}^{2} + \frac{\lambda}{2} \left(\mathcal{L}_{reg}(\{\mathbf{z}_{i}^{(1)}\}_{i=1}^{n}) + \mathcal{L}_{reg}(\{\mathbf{z}_{i}^{(2)}\}_{i=1}^{n}) \right) \quad \text{invariance} \quad \mathbf{x}^{(1)} = \mathbf$$

Sample-contrastive loss [Garrido et al., 2023]:

$$\frac{1}{n^2} \sum_{i=1}^n \sum_{i'=1}^n (\mathbf{z}_i^\top \mathbf{z}_{i'})^2 \longrightarrow \text{quadratic kernel}$$

Sample-contrastive loss [Garrido et al., 2023]:

$$\frac{1}{n^2} \sum_{i=1}^n \sum_{i'=1}^n (\mathbf{z}_i^\top \mathbf{z}_{i'})^2 \longrightarrow \text{quadratic kernel}$$

Alignment & Uniformity on the Hypersphere [Wang & Isola, 2020]:

 $\frac{1}{n^2} \sum_{i=1}^n \sum_{i'=1}^n e^{-t \|\mathbf{z}_i - \mathbf{z}_{i'}\|_2^2} \longrightarrow \mathsf{RBF} \mathsf{kernel}$

Invariance Kernel regularization
$$\frac{1}{n}\sum_{i=1}^{n} \|\mathbf{z}_{i}^{(1)} - \mathbf{z}_{i}^{(2)}\|_{2}^{2} + \frac{\lambda}{2} \left(\mathcal{L}_{reg}(\{\mathbf{z}_{i}^{(1)}\}_{i=1}^{n}) + \mathcal{L}_{reg}(\{\mathbf{z}_{i}^{(2)}\}_{i=1}^{n}) \right) \quad \mathbf{x}^{(1)} \quad \mathbf{x}^{(2)} \quad \mathbf{x}^$$

Sample-contrastive loss [Garrido et al., 2023]:

$$\frac{1}{n^2} \sum_{i=1}^n \sum_{i'=1}^n (\mathbf{z}_i^\top \mathbf{z}_{i'})^2 \longrightarrow \text{quadratic kernel}$$

Alignment & Uniformity on the Hypersphere [Wang & Isola, 2020]:

 $\frac{1}{n^2} \sum_{i=1}^n \sum_{i'=1}^n e^{-t \|\mathbf{z}_i - \mathbf{z}_{i'}\|_2^2} \longrightarrow \mathsf{RBF} \mathsf{kernel}$

Information-maximization method [Bardes et al., 2023]:

$$\frac{1}{n^2} \sum_{i=1}^n \sum_{i'=1}^n \left(b_1 \mathbf{z}_i^\top \mathbf{z}_{i'} + b_2 \frac{q(\mathbf{z}_i^\top \mathbf{z}_{i'})^2 - 1}{q - 1} \right) \longrightarrow \begin{array}{c} \text{combination} \\ \text{of linear and} \\ \text{quadratic} \end{array}$$

Invariance Kernel regularization
$$\frac{1}{n}\sum_{i=1}^{n} \|\mathbf{z}_{i}^{(1)} - \mathbf{z}_{i}^{(2)}\|_{2}^{2} + \frac{\lambda}{2} \left(\mathcal{L}_{reg}(\{\mathbf{z}_{i}^{(1)}\}_{i=1}^{n}) + \mathcal{L}_{reg}(\{\mathbf{z}_{i}^{(2)}\}_{i=1}^{n}) \right) \quad \mathbf{x}^{(1)} \quad \mathbf{x}^{(2)} \quad \mathbf{x}^$$

Sample-contrastive loss [Garrido et al., 2023]:

$$\frac{1}{n^2} \sum_{i=1}^n \sum_{i'=1}^n (\mathbf{z}_i^\top \mathbf{z}_{i'})^2 \longrightarrow \text{quadratic kernel}$$

Alignment & Uniformity on the Hypersphere [Wang & Isola, 2020]:

 $\frac{1}{n^2} \sum_{i=1}^n \sum_{i'=1}^n e^{-t \|\mathbf{z}_i - \mathbf{z}_{i'}\|_2^2} \longrightarrow \text{RBF kernel}$ $n \quad (\mathbf{x}_i - \mathbf{z}_{i'})^2 \quad \text{(b)} \quad \text{(c)}$

Information-maximization method [Bardes et al., 2023]: $\frac{1}{n^2} \sum_{i=1}^n \sum_{i'=1}^n \left(b_1 \mathbf{z}_i^\top \mathbf{z}_{i'} + b_2 \frac{q(\mathbf{z}_i^\top \mathbf{z}_{i'})^2 - 1}{q - 1} \right) \longrightarrow \begin{array}{c} \text{combination} \\ \text{of linear and} \\ \text{quadratic} \end{array}$

For this kernel:
$$\operatorname{MMD}(\mathbb{Q}, \mathbb{U}) = 0 \implies \mathbb{E}_{\mathbf{z} \sim \mathbb{Q}} \left[(\mathbf{z} - \mathbb{E}(\mathbf{z})) (\mathbf{z} - \mathbb{E}(\mathbf{z}))^{\top} \right] = \frac{1}{q} \mathbf{I}_{q}$$

Same goal as the regularizer in VICReg

-1

What is a good kernel choice?

Legendre expansion:

$$\varphi(t) = \sum_{\ell=0}^{+\infty} b_{\ell} P_{\ell}(q;t)$$

Legendre expansion:

 $+\infty$

 $\varphi(t) = \sum_{\ell=0}^{n} b_{\ell} P_{\ell}(q; t)$

What is a good kernel choice?

Truncated Legendre kernel: $\mathcal{K}(\mathbf{u},\mathbf{v}) = \sum_{\ell=1}^{L} b_{\ell} P_{\ell}(q;\mathbf{u}^{\top}\mathbf{v})$

Legendre expansion:

 $+\infty$

 $\varphi(t) = \sum_{\ell=0} b_{\ell} P_{\ell}(q; t)$

What is a good kernel choice?

Truncated Legendre kernel:
$$\mathcal{K}(\mathbf{u},\mathbf{v}) = \sum_{\ell=1}^{L} b_\ell P_\ell(q;\mathbf{u}^ op\mathbf{v})$$

ResNet-18 on a subset of 20% of ImageNet-1k. Evaluation by linear probing.

T

	SimCLR [†]	AUH [†]	VICReg [†]	10	SFRIK (ours)		
				L = 1	L=2	L = 3	
q = 1024	45.2	45.3	40.6	(1)	45.2	-	
q = 2048	45.8	45.9	44.0	-	45.9	-	
q = 4096	46.0	46.7	44.9	-	46.9	-	
q = 8192	46.1	46.8	46.0	27.7	47.0	47.5	

<u>Conclusion</u>: the first three orders are the most important.

Competitive results on ImageNet-1k

Pretraining with ResNet-50 during 200 epochs.

	Method	Epochs	Linear classification					Semi-supervised			
			IN100%		Places205		VOC07	1% labels		10% labels	
			Top-1	Top-5	Top-1	Top-5	mAP	Top-1	Top-5	Top-1	Top-5
	SimCLR* (Chen et al., 2020a)	200	68.3		-12	-	_	-	-	1	-
	SwAV* (Caron et al., 2020) (no multi-crop)	200	69.1	-	-	-	-	-	-	-	-
	SimSiam (Chen & He, 2021)	200	70.0	-	-	-	-	-	-	-	-
	VICReg [†] (Bardes et al., 2022) ($q = 8192$)	200	70.0	89.3	54.1	83.4	84.9	49.4	75.1	65.9	87.2
↑	SFRIK $(L = 2, q = 8192)$	200	70.1	89.3	53.8	83.0	85.1	46.6	73.3	65.7	87.3
	SFRIK $(L = 3, q = 8192)$	200	70.2	89.6	54.5	83.9	84.6	46.9	73.6	66.0	87.7
urs)	SFRIK $(L = 2, q = 16384)$	200	70.3	89.6	54.3	83.4	85.2	46.0	73.0	65.3	87.2
	SFRIK $(L = 2, q = 32768)$	200	70.3	89.6	54.1	83.0	85.0	46.1	73.0	65.4	87.3
+	SFRIK $(L = 3, q = 32768)$	200	70.3	89.7	54.4	83.2	85.1	46.6	73.0	65.8	87.5

Competitive results on ImageNet-1k

Pretraining with ResNet-50 during 200 epochs.

	Method	Epochs	Linear classification					Semi-supervised			
			IN100%		Places205		VOC07	1% labels		10% labels	
			Top-1	Top-5	Top-1	Top-5	mAP	Top-1	Top-5	Top-1	Top-5
	SimCLR* (Chen et al., 2020a)	200	68.3	_	-	-	-	-	-	-	-
	SwAV* (Caron et al., 2020) (no multi-crop)	200	69.1	-	-	-	-	-	-	-	-
	SimSiam (Chen & He, 2021)	200	70.0	-	-	_	-	-	-	-	-
	VICReg [†] (Bardes et al., 2022) ($q = 8192$)	200	70.0	89.3	54.1	83.4	84.9	49.4	75.1	65.9	87.2
†	SFRIK $(L = 2, q = 8192)$	200	70.1	89.3	53.8	83.0	85.1	46.6	73.3	65.7	87.3
	SFRIK $(L = 3, q = 8192)$	200	70.2	89.6	54.5	83.9	84.6	46.9	73.6	66.0	87.7
ours)	SFRIK $(L = 2, q = 16384)$	200	70.3	89.6	54.3	83.4	85.2	46.0	73.0	65.3	87.2
	SFRIK $(L = 2, q = 32768)$	200	70.3	89.6	54.1	83.0	85.0	46.1	73.0	65.4	87.3
*	SFRIK ($L = 3, q = 32768$)	200	70.3	89.7	54.4	83.2	85.1	46.6	73.0	65.8	87.5

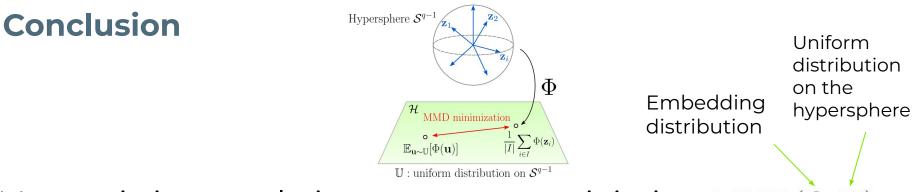
Kernel trick during pretraining:

- 19% faster
- 8% less memory per GPU

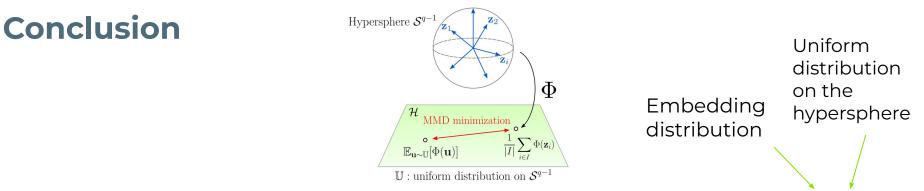
compared to VICReg (q=16384, batch size=2048).

Memory per GPU at q=32768

Batch size	VICReg	SFRIK	(ratio)
256	22.5GB	10.3GB	(2.2)
512	25.4GB	13.1GB	(1.9)
1024	31.1GB	18.8GB	(1.7)

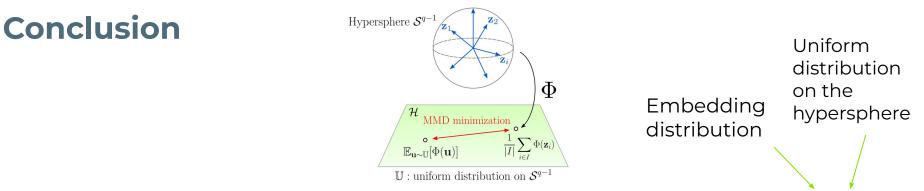


Many existing regularizers turn out to minimize $MMD(\mathbb{Q}, \mathbb{U})$ for different rotation-invariant kernels.



Many existing regularizers turn out to minimize $MMD(\mathbb{Q}, \mathbb{U})$ for different rotation-invariant kernels.

A truncated Legendre kernel is competitive.



Many existing regularizers turn out to minimize $MMD(\mathbb{Q}, \mathbb{U})$ for different rotation-invariant kernels.

A truncated Legendre kernel is competitive.

<u>Perspectives</u>: leverage the kernel framework for better self-supervision methods.

Self-supervised learning with rotation-invariant kernels

Léon Zheng \cdot Gilles Puy \cdot Elisa Riccietti \cdot Patrick Perez \cdot Rémi Gribonval

Poster: MH1-2-3-4 #166